Chronic metabolic acidosis enhances NHE-3 protein abundance and transport activity in the rat thick ascending limb by increasing NHE-3 mRNA.
نویسندگان
چکیده
Chronic metabolic acidosis (CMA) is associated with an adaptive increase in the bicarbonate absorptive capacity of the rat medullary thick ascending limb (MTAL). To specify whether NHE-3, the apical MTAL Na/H exchanger, is involved in this adaptation, NHE-3 mRNA was quantified by a competitive RT-PCR using an internal standard which differed from the wild-type NHE-3 mRNA by an 80-bp deletion. CMA increased NHE-3 mRNA from 0.025+/-0.003 to 0.042+/-0.009 amol/ng total RNA (P < 0.005). NHE-3 transport activity was measured as the initial proton flux rate calculated from the Na-dependent cell pH recovery of Na-depleted acidified MTAL cells in the presence of 50 microM HOE694 which specifically blocks NHE-1, the basolateral MTAL NHE isoform. CMA caused a 68% increase in NHE-3 transport activity (P < 0.001). In addition, CMA was associated with a 71% increase in NHE-3 protein abundance (P < 0.05) as determined by Western blot analysis on MTAL membranes using a polyclonal antiserum directed against a cytoplasmic epitope of rat NHE-3. Thus, NHE-3 adapts to CMA in the rat MTAL via an increase in the mRNA transcript that enhances NHE-3 protein abundance and transport activity.
منابع مشابه
Adaptation of NHE-3 in the rat thick ascending limb: effects of high sodium intake and metabolic alkalosis.
The present studies examined the effects of chronic NaCl administration and metabolic alkalosis on NHE-3, an apical Na+/H+exchanger of the rat medullary thick ascending limb of Henle (MTAL). NaCl administration had no effect on NHE-3 mRNA abundance as assessed by competitive RT-PCR, as well as on NHE-3 transport activity estimated from the Na+-dependent cell pH recovery of Na+-depleted acidifie...
متن کاملStimulation by in vivo and in vitro metabolic acidosis of expression of rBSC-1, the Na+-K+(NH4+)-2Cl- cotransporter of the rat medullary thick ascending limb.
To assess whether metabolic acidosis per se regulates rBSC-1, the rat medullary thick ascending limb (MTAL) apical Na+-K+(NH4+)-2Cl- cotransporter, rat MTALs were incubated for 16 h in an acid 1:1 mixture of Ham's nutrient mixture F-12 and Dulbecco's modified Eagle's medium. Cotransport activity was estimated in intact cells and membrane vesicles by intracellular pH and 22Na+ uptake measurement...
متن کاملRenal NHE expression and activity in neonatal NHE3- and NHE8-null mice.
Na(+)/H(+) exchanger (NHE)3 is the predominant NHE on the brush-border membrane of the proximal tubule in adult animals. NHE8 has been localized to the brush-border membrane of proximal tubules and is more highly expressed in neonates than in adult animals. However, the relative role of NHE8 in neonatal renal acidification is unclear. The present study examined if there was a compensatory incre...
متن کاملEndogenous flow-induced nitric oxide reduces superoxide-stimulated Na/H exchange activity via PKG in thick ascending limbs.
Luminal flow stimulates endogenous nitric oxide (NO) and superoxide (O2 (-)) production by renal thick ascending limbs (TALs). The delicate balance between these two factors regulates Na transport in TALs; NO enhances natriuresis, whereas O2 (-) augments Na absorption. Endogenous, flow-stimulated O2 (-) enhances Na/H exchange (NHE). Flow-stimulated NO reduces flow-induced O2 (-), a process medi...
متن کاملEndogenous flow - induced nitric oxide reduces superoxide - stimulated Na / H 1 exchange activity via PKG in thick ascending limbs
19 Luminal flow stimulates endogenous NO and O2 production by renal thick 20 ascending limbs (TALs). The delicate balance between these two factors regulates Na 21 transport in TALs; NO enhances natriuresis whereas O2 augments Na absorption. 22 Endogenous, flow-stimulated O2 enhances Na/H exchange (NHE). Flow-stimulated NO 23 reduces flow-induced O2 , a process mediated by cGMP-dependent protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 99 1 شماره
صفحات -
تاریخ انتشار 1997